EphèseLe catalogue de la bibliothèque de l'ECAM
Détail de l'auteur
Auteur Cedric RAEMDONCK |
Documents disponibles écrits par cet auteur (1)



Enhancing Information Retrieval by training a Sentence-Transformer with LoRA (Low-Rank Adaptation of Large Language Models) / Nick KUIJPERS
![]()
Titre : Enhancing Information Retrieval by training a Sentence-Transformer with LoRA (Low-Rank Adaptation of Large Language Models) Type de document : Travail de fin d'études Auteurs : Nick KUIJPERS, Auteur ; Cedric RAEMDONCK, ; François Defrance, Editeur : ECAM Année de publication : 2024 Langues : Français (fre) Mots-clés : Intelligence artificielle Index. décimale : TFE - Informatique (ECAM) Résumé : This study commenced with the development of a Retrieval-Augmented Generation (RAG) system during an internship at Siemens. This system integrates a Large Language Model (LLM), a vector database, and user interaction software, designed to empower AI assisting agents. We addressed the challenges associated with fine-tuning LLMs, especially in scenarios with limited datasets. Drawing inspiration from state-of-the art methods such as Generative Pseudo Labeling (GPL) and LoRa (Low-Rank Adaptation of Large Language Models), we devised innovative strategies to optimize embedding generation, a critical component within the vector database. Our study represents a significant advancement by introducing LoRa, a novel technique, into the training process of sentence-transformers. This pioneering approach marks a substantial contribution to the field, promising enhanced performance and adaptability in AI-driven applications. Enhancing Information Retrieval by training a Sentence-Transformer with LoRA (Low-Rank Adaptation of Large Language Models) [Travail de fin d'études] / Nick KUIJPERS, Auteur ; Cedric RAEMDONCK, ; François Defrance, . - ECAM, 2024.
Langues : Français (fre)
Mots-clés : Intelligence artificielle Index. décimale : TFE - Informatique (ECAM) Résumé : This study commenced with the development of a Retrieval-Augmented Generation (RAG) system during an internship at Siemens. This system integrates a Large Language Model (LLM), a vector database, and user interaction software, designed to empower AI assisting agents. We addressed the challenges associated with fine-tuning LLMs, especially in scenarios with limited datasets. Drawing inspiration from state-of-the art methods such as Generative Pseudo Labeling (GPL) and LoRa (Low-Rank Adaptation of Large Language Models), we devised innovative strategies to optimize embedding generation, a critical component within the vector database. Our study represents a significant advancement by introducing LoRa, a novel technique, into the training process of sentence-transformers. This pioneering approach marks a substantial contribution to the field, promising enhanced performance and adaptability in AI-driven applications. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Documents numériques
Ce document n'est visible qu'après identification
KUIJPERS_Nick_-_5MIN.pdfAdobe Acrobat PDF