EphèseLe catalogue de la bibliothèque de l'ECAM
Détail de l'auteur
Auteur Dimitrios Tourtounis |
Documents disponibles écrits par cet auteur (1)
Visionner les documents numériques
Affiner la recherche
Anomaly detection on wind turbines components, before they reach a dangerous level, with deep learning methods applied on SCADA dataset / Hubert Mugabo Pitie
Titre : Anomaly detection on wind turbines components, before they reach a dangerous level, with deep learning methods applied on SCADA dataset Type de document : Travail de fin d'études Auteurs : Hubert Mugabo Pitie, Auteur ; Dimitrios Tourtounis, ; François Defrance, Editeur : ECAM Année de publication : 2019 Note générale : AKKA TECHNOLOGIES Langues : Anglais (eng) Index. décimale : TFE - Informatique (ECAM) Résumé : The transition from fossil energies to renewable ones will require the use of different energy sources. Wind Turbine (WT) is one of the solutions as it uses the wind (a renewable source) as the energy source. The WT costs come mainly from the operating cost, the cost to maintain the WT. Today, the maintenance is done periodically or after a problem is detected. To reduce this cost, artificial intelligence methods (Neural Networks) can be used with the Supervisory Control and Data Acquisition (data) system to monitor the condition of Wind Turbine components. The monitoring is done by predicting anomalous behavior. The goal of this thesis is to implement a predictive maintenance, via Neural Networks, to detect anomalous behaviors and prevent them or reduce their impact. Anomaly detection on wind turbines components, before they reach a dangerous level, with deep learning methods applied on SCADA dataset [Travail de fin d'études] / Hubert Mugabo Pitie, Auteur ; Dimitrios Tourtounis, ; François Defrance, . - ECAM, 2019.
AKKA TECHNOLOGIES
Langues : Anglais (eng)
Index. décimale : TFE - Informatique (ECAM) Résumé : The transition from fossil energies to renewable ones will require the use of different energy sources. Wind Turbine (WT) is one of the solutions as it uses the wind (a renewable source) as the energy source. The WT costs come mainly from the operating cost, the cost to maintain the WT. Today, the maintenance is done periodically or after a problem is detected. To reduce this cost, artificial intelligence methods (Neural Networks) can be used with the Supervisory Control and Data Acquisition (data) system to monitor the condition of Wind Turbine components. The monitoring is done by predicting anomalous behavior. The goal of this thesis is to implement a predictive maintenance, via Neural Networks, to detect anomalous behaviors and prevent them or reduce their impact. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Documents numériques
Ce document n'est visible qu'après identification
thesis_memoire_MuGaBo_13022_compressed.pdfAdobe Acrobat PDF